.Ensure compatibility along with various structures, including.NET 6.0,. NET Platform 4.6.2, and.NET Criterion 2.0 as well as above.Reduce addictions to avoid model disagreements and also the necessity for binding redirects.Recording Audio Files.Some of the main functionalities of the SDK is audio transcription. Programmers may transcribe audio reports asynchronously or in real-time. Below is an instance of how to record an audio file:.using AssemblyAI.using AssemblyAI.Transcripts.var customer = brand-new AssemblyAIClient(" YOUR_API_KEY").var records = wait for client.Transcripts.TranscribeAsync( brand new TranscriptParams.AudioUrl="https://storage.googleapis.com/aai-docs-samples/nbc.mp3". ).transcript.EnsureStatusCompleted().Console.WriteLine( transcript.Text).For nearby reports, similar code may be used to accomplish transcription.await using var flow = brand-new FileStream("./ nbc.mp3", FileMode.Open).var records = await client.Transcripts.TranscribeAsync(.stream,.new TranscriptOptionalParams.LanguageCode = TranscriptLanguageCode.EnUs.).transcript.EnsureStatusCompleted().Console.WriteLine( transcript.Text).Real-Time Sound Transcription.The SDK additionally reinforces real-time sound transcription utilizing Streaming Speech-to-Text. This feature is especially helpful for treatments needing quick handling of audio records.using AssemblyAI.Realtime.await using var transcriber = brand-new RealtimeTranscriber( brand-new RealtimeTranscriberOptions.ApiKey="YOUR_API_KEY",.SampleRate = 16_000. ).transcriber.PartialTranscriptReceived.Subscribe( records =>Console.WriteLine($" Limited: transcript.Text "). ).transcriber.FinalTranscriptReceived.Subscribe( records =>Console.WriteLine($" Last: transcript.Text "). ).wait for transcriber.ConnectAsync().// Pseudocode for acquiring sound from a microphone for instance.GetAudio( async (portion) => wait for transcriber.SendAudioAsync( piece)).wait for transcriber.CloseAsync().Taking Advantage Of LeMUR for LLM Functions.The SDK incorporates with LeMUR to make it possible for programmers to construct big language design (LLM) functions on vocal records. Listed here is actually an instance:.var lemurTaskParams = brand-new LemurTaskParams.Cue="Give a quick rundown of the records.",.TranscriptIds = [transcript.Id],.FinalModel = LemurModel.AnthropicClaude3 _ 5_Sonnet..var action = await client.Lemur.TaskAsync( lemurTaskParams).Console.WriteLine( response.Response).Sound Cleverness Models.Furthermore, the SDK possesses integrated assistance for audio intellect designs, enabling conviction study and also various other enhanced components.var records = wait for client.Transcripts.TranscribeAsync( new TranscriptParams.AudioUrl="https://storage.googleapis.com/aai-docs-samples/nbc.mp3",.SentimentAnalysis = true. ).foreach (var cause transcript.SentimentAnalysisResults!).Console.WriteLine( result.Text).Console.WriteLine( result.Sentiment)// POSITIVE, NEUTRAL, or even NEGATIVE.Console.WriteLine( result.Confidence).Console.WriteLine($" Timestamp: result.Start - result.End ").For additional information, see the formal AssemblyAI blog.Image source: Shutterstock.